Chapter 20: OO Analysis, Design and Development. - 751

Once the software is developed, it has ta be subjected to tests at module (unit) level, module
integration level, software/hardware integration (system) level and finally at the system level. Module
testing focuses on individual software units or related group of units. Module integration testing
focuses on combining software and hardware units, to evaluate the interaction among them. System
testing focus on complete, integrated systems to evaluate compliance with requirement specification.

A module has to be tested for lo gical errors and computational errors-while the interface is checked
to see whether the interaction between the modules are proper. The techniques that have been pro-
posed for unit testing include the following:

« Path testing: each possible path from input to output is traversed once.

« Branch testing: each path must be traversed at least once.

« Functional testing: each functional decomposition is tested at least once.

« Special values testing: testing for all values assumed to cause problems.

« Anomaly analysis: testing the program constructs that can cause problems.

« Interface analysis: testing for problems at module interfaces.

Maintenance: Once the system is put into operation, it must be maintained, which includes fixing
bugs discovered during operation, adapting the system to a particular environment, and tuning it to
improve performance. 1f some major changes or improvements are made to increase the functionality or
performance, the system may undergo an evolution. The boundary between maintenance and evolu-
tion is fuzzy because what constitutes a major change is a subjective-opinion.

Maintenance absorbs a large fraction of the cost incurred during the software life cycle. A major
portion of maintenance activity is a consequence of misinterpreted user requirements or faulty debug-
ging during operation, which thereby introduces errors that did not exist earlier. Some of these mainte-
nance problems could be reduced if more attention is paid to the development. If programmers have
clearly understood the users’ requirements, if they have documented the specification, design, and
code properly, and if they have tested the system fully before its release, maintenance would not be so
difficult and costly. To reduce maintenance costs, the software life cycle is divided into two fundamen-
tal phases—development and operation/maintenance. Software engineers should view these as dis-
tinct phases so that, both receive sufficient attention during the software life cycle.

20.2 Cost of Error Correction

Software development process includes analysis and generation of software requirements, software
design, coding, final testing, and reliability modeling. Each one of these development phase. includes
verification, since it is easy to detect errors at each stage and also it will avoid error propagation from
one stage to another. Further, it has been shown that the cost of correction of errors increases sharply
as the development stage advances. The relative cost of correcting errors is 1% during the design
phase, 3 during the coding phase, 21% during the testing phase and rises to 75% when the software is

put into operation. (See Figure 20.3.}
The following are the different types of errors that may creep into the design of a software system:

« Incomplete or erroneous specification

« Intentional deviation from specification
« Violation of programming standards

« Erroneous data accessing

« Erroneous decision logic or sequencing

752 Mastering C++

+ Erroneous arithmetic computations
«+ Invalid timing

+ Improper interrupt handling

+. Wrong constants and data values
+ Inaccurate documentation

Figure 20.3: Cost of error correction Vs. development stage

20.3 Change Management

Changes to system are bound to happen many times either during the system design, or after complete
implementation of the system, or during system operation. Hence, it is very essential to define change
management process. The changes can be in the form of any modification to functionality during the
design phase. It can also be due to any modification to agreed functionality or deliverable description
in any phase. Some of the factors causing changes in a project are the following:

+ Customer misunderstanding

+ Inadequate specification

+ New customer request

+ Organization changes

+ Government regulation
What is a Change ?

A change is an alteration to the project scope, deliverables, or milestones that would affect the project

- cost, schedule, or quality. Change is inevitable and occurs during the course of a project as shown in
Figure 20.4. Once the implemented system becomes stable, many new requirements can be incorporated
with minimal change to the design. The project manager is responsible for change control. Different
categories of change exist: mandatory, critical, and nice to have. These changes must pass through
proper channel and all documents must be updated. Before initiation of the change process, it must be
first investigated and its impact on various factors must be thoroughly studied. The project manger can
accept the change request, or reject the change request, or return the change request for further

_investigation or clarification. Once a change request is approved, it has to be incorporated appropri-
aiely at respective level or may even be carried out to all other phases. If it is improperly handled, it
might even lead to the collapse of the whole system.

Chapter 20: OO Analysis, Design and Development 753

System
changes System Change to
"| Analysis systgm
Analysis
Design A
changes System Change to
"| Design design
Design
A
Bugs
g Programming l¢— Change to
> code
Code
Test
S
Product

Figure 20.4: Change requests during system development

20.4 Reusable Components

Another important strategy that helps in reliable programming is to use all well proven, tested software
modules without redesigning them. The usage of such well proven modules decreases the development
effort and increases reliability. Though this idea is not very popular, except in scientific subroutines and
some database applications, it is becoming increasingly acceptable to the software development com-
munity since the recent languages support the concept of modularization and separate compilation of
those modules.

Some of the important components of reusability or levels of reusability are: code, data, design,
specification, etc. The most popular level of reusability is code reusability.

Reusing Code

It can be in the form of making a call to subroutines library. Other forms of code reusability are the

following:

« Cut and paste of code: In this method, the required portion of a code is cut and pasted in another
module and necessary changes are incorporated.

« Source-level includes: In C++, it is performed by including the header file by using the include
preprocessor directive.

« Binary links: Making a call to a function stored in the library in the form of executable code.

+ Runtime invocation: In all the above three forms of source code reuse, while writing program itself the
programmer has to know which component they wish to reuse. The binding of the reused compo-
nents takes place at coding time, compile time, or link-time. In some cases, the flexibility of runtime

754 Mastering C++

binding is essential. In C++, it is supported by virtual functions. The important point to be noted
about the OO paradigm: the degree to which the OOPL supports dynamic binding may strongly
influence the degree of reusability in the organization,

Reusing Data

Some of the data declared in a header file can be reused extensively by including that in a program.
These can be in the form of macro constants, literals, enumerated constants, etc.

Reusing Designs

The major problem with code reuse is that coding takes place after major activity: analysis and design.
It is well known that only 15 percent of project duration is used by coding phase, so any attempt to
increase coding productivity (through high level languages) can have only a limited impact on overall
project productivity.

Earlier major focus was given to source-level components. Today, focus is shifted to achieving
significant results through reuse of the design and specification level. As pointed out by experts, code
reuse typically occur at the bottom levels of a system design hierarchy whereas, design reuse occur in
most of the branches of hierarchy (see Figure 20.5).

Code reuse Design reuse

Figure 20.5: Code reuse Vs. Design reuse

Reusing Specification
Although design reuse is good, specification reuse is much better. It eliminates completely (almost) the
effort needed in designing, coding, and testing an implementation of that specification.

Miscellaneous Reuse Components

While code, data, design, and specification are the most obvious candidates for reuse, they are not the
only ones. Some of the possible candidates are:

.+ Cost-benefit calculations

+ User documentation

« Feasibility studies

o Test cases, test procedures, test drivers, test stubs

Among all the entities involved in the software project, one component that cannot be reused is the
people (who make up the project team). The experience, infrastructures, etc., gained by a project team
during one project should be carried over, that is, reused in the ncxt project whenever possible. This
seem to be a common sense, but it is not common in software industry. It is because, teams are busted

Chapter 20: 00 Analysis, Design and Development 7155

apart at the end of the project and individuals are scattered and reassigned to other projects or they
might change organization (which is most common in software industry). Hence, peopleware approaches
to software productivity often achieve results several times greater than technical approaches.

20.5 Software Life Cycle: Fountain-Flow Model

The conventional model requires a large amount of time to be spent in formulating the problem specifi-
cations. It delays the writing of code, and programmers may be impatient. In addition, the conventional
life cycle model permits little feedback from the end user until the coding stage, which s at the end of the
life cycle. At this point, if the system does not meet the specifications, the design and code becomes
very expensive. It is often easier to change an existing system than to redevelop the specifications and
design a new system. The conventional modei fails to address software reusability, hence the existing
software is not usable as a starting point.

Process

Object A Object C

Methods
™™ —/

Input —» — Qutput

| Object B Object D

- Figure 20.6: Objects interacting with each other

Objects are represented as individual entities which uniguely identify (reir own contents as well as
the operations that may be performed on them. Thus, it is a philosophy of system design to decompose
a problem into a set of abstract object types Or resources in the system and a set of operations that
manipulate instanoes in the system; and a set of operations that manipulate instances of each object

type. The OO paradigm views a system as a collection of entities called objects that interact with each
other to meet a specific objective. (See Figure 20.6).

00 methodology allows the end-users, analysts, designers, and programmers to view various
components of the system in the same way, thus simplifying the process of mapping the customer
requirement to the implementation model. The real-world entities are represented in the form of objects.
Objects play the central role in all phases of the software development process. Therefore, there is a
high degree of overlap and interaction among the phases. The use of waterfall model in the design of
00-based system does not allow overlap and interaction among the development phases. This problem
can be circumvented by using 2 model that resembles a fountain. The resultant model is called fountain

756 ‘Mastering C++

flow model and is shown in Figure 20.7. It allows a higher level phase to interact with its lower phase and
again proceed to a higher level phase.

Maintenance Further development

Application

4

Object-oriented Objects
programming in program
Object-oriented Object

design in solution space

Object-oriented
analysis

Object
in problem space

Figure 20.7: Fountain-flow model for 00 system development
20.6 Object-Oriented Notations

Graphical notations play a major role while representing the design and development processes, and
object-oriented design is no exception. They increase the ease with which ideas can be exchanged
among the members of a project team. Object-oriented design requires notations for representing classes,
objects, derived classes and their interrelationship, and interactions among objects. Unfortunately, for
represénting these aspects, there are no standard notations. In this book, authors have used their own
notations and in addition to some of the commonly used notations, which are discussed in earlier
chapters such as Object Oriented Paradigm, Classes and Objects, Inheritance, etc.

20.7 Object-Oriented Methodologies

Many object-oriented analysis (OOA) and object-oriented design (OOD) methodologies have emerged
recently, although the concepts underlying object-orientation as a programming discipline has been

Chapter 20: OO Analysis, Design and Development 157

developed long time ago. Object orientation certainly encompasses many novel concepts, and is popu-
larly called as a new paradigm for software development. Object-oriented methodologies represent a
radical change over conventional methodologies such as structured analysis.

Various object-oriented methodologies can be best investigated by dividing them into two camps—
revolutionaries and synthesists. Revolutionaries believe that object-orientation is a radical change that
renders conventional methodologies and ways of thinking (about design) obsolete. Synthesists, by
contrast, view object-orientation as simply an accumulation of sound software engineering principles
which adopters can graft onto their existing methodologies with relative ease.

The revolutionaries (Booch, Coad, Yourdon) state the following:

+ There should be no doubt that object-oriented design is fundamentally different from traditional
structured design approaches, it requires a different way of thinking about decomposition, and it
produces software architectures that are largely outside the realm of the structured design culture.

« There is no doubt that one could arrive at the same results using different methods; but it is revealed
from experience that the thinking process, the discovery process, and the communication between
the user and-analyst are fundamentally different with OOA than with structured analysis.

On the other side the synthesists (Wasserman, Pircher, Muller, Page Jones, and Weiss) state the
following:

+ Object-oriented structured design (OOSD) methodology is essentially an elaboration of structured
design. They state that the foundation of OOSD is structured design, and that structured design
includes most of the necessary concepts and notations for OOSD.

+ The problems that object orientation has been widely touted as a revolutionary approach is a
complete break with the past. This would be fascinating if it were true, but it is not like most engineer-
ing developments, the object oriented approach is a refinement of some of the best software engi-
neering ideas of the past.

The leading analysis methodologies are the following:

« DeMarco structured analysis

« Yourdon modern structured analysis

« Martin information engineering analysis

« Bailin object-oriented requirements specification
« Coad and Yourdon object-oriented analysis

« Shlaer and Mellor object-oriented analysis

The leading design methodologies are the following:
« Yourdon and Constantine structured design
+ Martin information engineering design
+ Wasserman et al. object-oriented structured design
+ Booch object-oriented design
« Wirfs-Brock et al. responsibility-driven design

Object-Oriented Analysis

Object-oriéntcd analysis provides a simple, yet powerful mechanism for identifying objects, the build-
ing blocks of the software to be developed. It is mainly concerned with the decomposition of a problem
into component parts and establishing a logical model to describe the system. The various steps
involved in OOA are shown in Figure 20.8.

758 Mastering C++

The two general findings about object-oriented analysis are:
1. OOA fulfills the properties of analysis, and
2. OOA has a smooth transition to design
OOA model should cover objectives, application domain knowledge, requirements of the environ-
ments, and requirements of the computer system.

+ Objectives: These are the ultimate expectations of the users towards the entire information system
(both computerized and manual). i.e., the objectives which are to be fuliilled through the interplay
between the computer system and the surrounding human organization.

+ Application domain knowledge: This defines the vocabulary of the application, its meaning, and
properties.

+ Requirements of the environment: This is a description of the behavior required from the human
organization to meet the objectives.

+ Requirements of the computer system: This is a-description of the behavior required from the
computer system to meet the objectives.

Problem
definition

y

Requirement
specifications

Objects in Y
problem space Identify
objects

] L

v h 4

Identify
services

Identify
collaborations

J

v

| Design

Figure 20.8: Steps in object-oriented analysis

For most OOA/OOD approaches, the difference between analysis and design is not recognized as
the difference between the user requirement and the solution, but simply as the difference between

Chapter 20: OO Analysis, Design and Development 759

«what” and “how”. It is interpreted as “Analysis is aimed at describing what a target system is sup-
posed to do to obtain an agreement with a customer bearing the expenses. While design is aimed at
describing how the designed system will work...”.

Positive Trends in OOA
OOA has evolved and focuses on system dynamics. Novel features of this method include:

1. It does not assume that a previously written requirement specification exists.

2. It focuses on the analysis content, including goals and objectives.

3. It considers external objects as initiators of the scenario.

4. Attention to requirement elicitation is given by creating scenarios from a structured interview pro-
cess. '

5. Symbolic execution can be obtained, because scripts and state transition are coupled through pre-
and post- condition.

Object-Oriented Design

Object-oriented design is a radical change from both process-oriented and data-oriented methods. The
0OOD methodologies collectively model several important dimensions of a target system not addressed
by conventional methodologies. These dimensions relate to the detailed definition of classes and
inheritance, class and object relationships, encapsulated operations, and message connections. The
need for adopters to acquire new competencies related to these dimensions, combined with Booch’s
uncontested observation that OOD uses a completely different structuring principle (based on object-
oriented rather than function-oriented decomposition of system components), renders OOD as a radical
change.

Object-oriented design is concerned with mapping of objects in the problem space into objects in
the solution space. It creates overall architectural model and computational model of the system. In
OOD, structure of the complete system is built using bottom-up approach whereas, class member
functions are designed using top-down functional decomposition. It is important to construct struc-
tured hierarchies, identify abstract base classes, and simply the inter-object communication. Reusabil-
ity of classes from previous design using inheritance principle, classification of objects (grouping) into
subsystems providing specialized services, and determination of appropriate protocols are some of the
considerations of the design stage.

Most of the object-oriented methodologies emphasize the following steps:
1. Review of objects created in the analysis phase.

2. Specification of class dependencies

3. Organization of class hierarchies using inheritance principles.

4, Design of classes.

5. Design of member functions.

6. Design of driver program.

20.8 Coad and Yourdon Object-Oriented Analysis

Coad and Yourdon OOA methodology can be viewed as building upon the best concepts from informa-
tion modeling, object-oriented programring languages, and knowledge-based systems. OOA results
in a five-layer model of the problem domain, where each layer builds on the previous layers. The layered
model is constructed using a five-step procedure.

760 Mastering C++

+ Define objects and classes. Look for structures, other systems, devices, events, roles, operational
procedures, sites and organizational units.

o+ Define structures. Look for relationships between classes and represent them as either general-to-
specific structures (for example, employee-to-sales manager) or whole-to-part structures (for example
car-to-engine).

+ Define subject areas. Examine top-level objects within whole-to-part hierarchies and mark these as
candidate subject areas. Refine subject areas to minimize interdependencies between subjects.

« Define attributes. Identify the atomic characteristics of object as attributes of the object. Also look for
associative relationships between objects and determine the cardinality of those relationships.

o Define services. For each class and object, identify all the services it performs, either on its own behalf
or for the benefit of other classes and objects.

The primary tools for Coad and Yourdon OOA are class and object diagrams and service charts. The
class and object diagram has five levels, which are built incrementally during each of the five analysis
steps outlined above. Service charts, which are much similar to a (traditional) flow chart, are used
during the service definition phase to represent the internal logic of services. In addition, service charts
portray state-dependent behavior such as preconditions and triggers (operations that are activated by
the occurrence of a predefined event).

20.9 Booch’s Object-Oriented Design

While there are many object-oriented design methodologies, one approach that reflects the essential
features of object-oriented design is presented by Grady Booch. The four major steps involved in the
object-oriented design (OOD) process are:

1. Identification of Classes (and Objects)

2. Identification of Semantics of Classes (and Objects)

3. Identification of Relationship between Classes (and Objects)

4. Implementation of Classes (and Objects) '
Identification of Classes (and Objects)

In this step, key abstractions in the problem space are identified and labeled as potential candidates for
classes and objects.

Identification of Semantics of Classes (and Objects)

In this step, the meanings of classes and objects identified in the previous step are established, which
includes definition of the life cycles of each object from creation to destruction.

Identification of Relationship between Classes (and Objects)

In this step, interactions between classes and objects, such as, patterns of inheritance among classes
and patterns of visibility among objects and classes (what classes and objects should be able to “see”
each other) are identified.

Implementation of Classes (and Objects)

In this step, detailed internal views are constructed, including definition of methods and their behav-
iors. Objects and classes have to be allocated to modules (as defined in the target language environ-
ment) and resulting programs to processor (where the target environment supports multiple proces-
SOTIS). :

The primary tools used during OOD are:

Chapter 20: OO Analysis, Design and Development 761

« class diagrams and class templates (which emphasize class definitions and inheritance relationships)

« object diagrams and timing diagrams (which stress message definitions, visibility, and threads of
control)

« state-transition diagrams (to model object states and transitions)

« operation templates (to capture definitions of services)

+ module diagrams and templates (to capture physical design decisions about the assignment of ob-
jects and classes to modules)

o process diagrams and templates (to assign modules to processors in situation where a multiprocessor
configuration is supported)

20.10 Class Design

Whether the design methodology chosen is Booch’s OOD or any of the several other methodologies,
design of classes is consistently declared to be central to the OO paradigm. Note that class design has
the highest priority in OOD, and since it deals with the functional requirements of the system, it must
occur before system design (mapping objects to processors/processes) and program design (reconcil-
ing of functionality using the target languages and tools etc.). Classes are developed either for building
applications or for building class libraries or hierarchies. The class hierarchy is built by combining data
hierarchy and procedure hierarchy as shown in Figure 20.9.

Conventional procedural approach Object-oriented approach
is
data structure hierarchy replaced \

by
W class hierarchy

procedure hierarchy
Figure 20.9: Class hierarchy combining data and brocedure hierarchy

The output of the analysis phase must be transformed into a set of abstract class designs. Class
design methods arrive at internal representational and algorithmic specifications that meet the declara-
tive constraints of analysis models. The various steps involved in class development are shown in
Figure 20.10. It includes class requirements, class design, testing, debugging, and finally ends with
class certification. The various OOA/OOD methodologies discussed earlier have emphasized on class
development.

766 Mastering C++

+ Move assumptions from a method to its callers

For example, a method might validate that the appropriated semaphore is locked by the current thread
before modifying a shared resource protected by that semaphore. Instead, if all callers lock the sema-
phore before the call, it would no doubt be efficient, but also more dangerous and less general, to
explicitly move the assumptions of lock ownership to the callers.- This category of change tends to
remove code from a method, and proportionally increase the number of warnings in the commentary
describing the assumption made by the method.

+ Move code from callers of a method into the method

The objective here, is to move the context of a call from the caller into the method. For example, if a caller
is looping through hundreds of page table addresses in order to convert disk request to disk sector
addresses, the conversion method can be augmented with a fatter interface that passes a collection of
addresses, and the loop can be moved into the method. This is important in methods with protocol
considerations such as lock ownership.

+ Object pools

This technique minimizes calls to constructors in a manner analogous to memory pools minimizing the
calls to operator new. The key is to reuse objects rather than constructing new ones. For example, if 80%
of the fields in a page-fault object are the same for most page faults, it is possible to avoid the overhead
by preconstructing page-fault objects, and adjusting the object’s state via a method rather than initial-
izing all the fields using a constructor. This is a special case of avoiding data movement.

+ Caches

Instruction counts could sometimes be reduced by introducing caches. Note that the implied increase
in data size can produce more page-faults, however, there were no tools available to predict the correla-
tion. This issue is still being investigated.

+ Dead code removed

Implicit C++ constructor and destructor calls provide a new variant of dead code removal. In some
cases, the previous changes made to the local objects are superfluous. Removing these local objects
can avoid wasting instructions. In some case, removing these has saved over 1,000 instructions along
acritical path.

+ Inlining

A function is expanded inline when the compiler replaces a traditional CALL instruction with code
contained in the body of the function. In addition to eliminating the cost of setting up the stack frame,
the optimizer can procedurally integrate the called function body into the caller’s code by performing
traditional optimization techniques across the call boundary by using techniques such as register
liveness, constant propagation, and loop invariant code motion.

20.13 Software Project Management

Software project management is a complex undertaking. It requires project managers who are competent
technical specialists and have some level of understanding and appreciation for the management prin-
ciples as computer professionals. Knowin g how to manage large projects is a critical skill for the
computer professional. Many projects in the computer industry have failed to achieve their objectives

S

Chapter 20: 00 ‘Analysis, Design and Development 767

due to lack of managerial skills. Consider the following circumstances:

+ Project objectives are poorly defined and/or understood, even by members of the project team.

+ Project deadlines are dictated by external events or imposed arbitrarily by administrators.

+ Project budgets are based on naive estimates given by inexperienced managers.

« Project staffing is determined more by availability than ability.

The outcome of projects launched under such circumstances is easily predicted. Managing a well-
planned and well-staffed project is challenging; with fuzzy objectives, unrealistic schedules, inad-
equate budget, and weak staffing, project managers would need a miracle to succeed.

Guidelines for Launching a'Project
Every project is unique in its management requirements, but certain steps can be taken at the time the

project is launched to improve the prospects. The following guidelines are offered for managing the
project well:

¢ Establish a realistic project objective, setting forth in detail what will be accomplished if the project is
successful.

+ Appoint a competent project manager whose administrative, technical, and political skills commensu-
rate with the task.

& Setup the project organization at an appropriate level and establish the appropriate communications
links among all-the elements of the organization that must play arole in the project’s success.

o Staff the project with the proper mix of technical and administrative skills. Avoid, whenever possible,
part-time assignments so that the individuals who are working on the project can devote their full
attention to it.

+ Identify key project milestones which, when achieved, will demonstrate definitive progress toward
the ultimate project objective.

Note: This step, plus Steps 6-11 below, may require several iterations before a satisfactory plan,
schedule, and budget can be developed and approved.

+ Plan the project in detail, identifying all tasks that must be completed to reach each milestone.

¢ Assign each task to an individual or to a specific organization so that responsibility for its completion
is unambiguous.

¢ Estimate the time required to complete each task. It is essential that the time estimate for each task be
made by the individual or organization that bears the responsibility for completing it.

+ Estimate the cost of completing each task (or groups of tasks); again, these estimates should be made
by the responsible person.

+ Produce a project schedule and time-phased budget (using critical-path or similar network techniques
when the size of the project warrants).

o Distribute the plan, schedule, and budget to all concerned parties and confirm their “ownership” of
the tasks assigned to them.

¢ Review the project schecule and budget regularly. At each review meeting, ask for reaffirmation of
plans and schedules (for the forthcoming period). While managing a large and complex projects, carry
out project reviews, take minutes to document key decisions and follow-up assignments.

+ Update project plans and schedules after each review meeting and distribute them as noted
previously.

¢ Manage the project!

768 Mastering C++

Of course, no project management philosophy can guarantee the success of any project, no matter
how noble its objectives are, or how diligently it is applied. It can, however, materially improve the
prospects for success, provided all project participants accept the philosophy and it is administered in
a consistent and disciplined manner.

20.14 Plan for OO Battle

After all the theory and discussions about object-oriented programming, success with OO (Object-
Oriented Technology) requires a commitment, as well as a plan, for action. The software designers, who
excited by the new technology, are often ready to make the commitment with no planning at all. Just to
recall, if you are not planning, you are planning for failure. Here are a series of planning steps
articulated by OO experts for the major management planning activities required for successful imple-
mentation of object-orientation:

+ Obtain Initial Advice

It is necessary to have consultation with experienced OO consultant before embarking on the OO .

bandwagon, to take a decision on suitability of OO methodologies and its benefits. This must provide
an insight into the key decision makers in the organization what steps are involved, how long it will take,
how much it will cost, what benefits are likely to accrue, and what risks must be accepted.

+ Obtain Management Commitment

This is a crucial issue and important for the success of the object-orientation in the organization than
the technical features of OO technology or the choice of C++ over Smalltalk. If management is opposed
to this, then it probably won’t work-out.

+ Conduct Pilot Projects

Similar to all new technologies, OO needs to be validated and demonstrated to the organization. This is
usually demonstrated through the use of a pilot project. A pilot project should be medium-sized and
within the context of the organization. It is known that the failure of a pilot project will not bankrupt the
organization. A good pilot project should be staffed by enthusiastic volunteers who are well trained
and well supported by expert consulting assistance. A final conclusion can be reached from the viabil-
ity of the proposed new technology.

+ Develop a Training Plan

Training for object-orientation is important before taking any initiative to switch over to OO develop-
ment. It is necessary to train programmers, designers, system analysts, and project leaders. If the
management cannot afford to train all of them at once, it can be done in multiple phases.

+ Document Management Expectations

+ Develop an OO Development Life Cycle
+ Choose OOA/OOD/OOP/OOT methods
+ Choose OOP Language and Compiler

¢ Choose OO Case Tools and Repository
« Identify OO Based Matrices

+ Revise Software Development Plan

Chapter 20: OO Analysis, Design and Development 769

20.15 A Final Word

The activities summarized in this chapter and C++ programming issues discussed in the earlier chapters
can be mastered only with hands on experience. OO is surely not suitable for managing small projects
and it may appear to be very costly. OO methodology has born to stay and is all set to win. It will surely
help in long term and has impact right from the system study to the system maintenance and of course,
even in training the end-users.

There are many optimistic and pessimistic views on adopting this new technology. The use of latest
technology has played a very significant role in the success of several (world-class) organizations and
even individuals. It is well known that “future belongs to those who use latest technology”, and you
might as well start now; delaying the decision by a day will just add one more day to a process that is
bound to take several years. If you are worried that you are not the first one in industry (state, country,
or world) to adopt OO, do not worry, you are not the last person. Perhaps the best advice (drawn from
the Proceeding of the National Conference on Computers in Education and Training, India) on
adopting new technology in the rapidly changing computer world is here:

“Our initial backwardness, our late arrival on the scene, and the small investments we made in the
past need not remain as our handicaps but can be turned into our most valuable advantages if we
make the right decisions now, order judicious investments and march forward with determination.”

Review Questions

20.1 Compare the object-oriented computational model with the structured computational model.

20.2 Explain the water-flow model of software development.

20.3 Why does the cost of error correction increase as the development phase progresses ?

20.4 What are the issues to be considered while selecting a language for software implementation ?

20.5 What is change ? Explain how change management can be handled ?

20.6 What are the different reusable components ? Explain why code reusability occurs at the bottom
of hierarchy and design reuse occurs in most of the branches of hierarchy ?

20.7 Explain the fountain-flow model of software development.

20.8 Draw object-orientated notations for class, object, inheritance, delegation, etc.

20.9 Investigate object-oriented methodologies as viewed by revolutionaries and synthesists.

20.10 Explain the steps involved in object-oriented analysis.

20.11 Explain the Coad and Yourdon object-oriented analysis method.

20.12 Explain the Booch object-oriented design method.

20.13 Compare the object-oriented and traditional analysis methodologies.

20.14 Compare the object-oriented and traditional design methodologies.

20.15 What is design for reuse ? Explain the steps involved in a class design.

20.16 What is a driver function ? What are its responsibilities ?

20.17 What are the steps involved in building a reliable code ?

20.18 State and explain the guidelines for tuning performance of an OO software.

20.19 What is the software project management ? State guidelines for launching a project.

20.20 What are the steps involved in the major management planning required for successful imple-
mentation of the object-oriented system ?

Appendix A:

C++ Keywords and Operators

C++ supports a wide variety of keywords and operators to support object-oriented programming. The
following sections illustrates them with syntax, description, and examples.

asm, _asm, _ asm: embed assembly statements

Syntax:
asm <opcode> <operands> <; or newline>
_asm <opcode> <operands> <; or newline>
__asm <opcode> <operands> <; or newline>

Description: It allows to embed assembly language statements in between C++ statements. These
assembly language statements are machine dependent; portability of a program is lost when such
statements are used.

Example: asm mov ax, _stklen
asm add bx, cx
asm add bx, 10

Any C++ statement can be replaced by the appropriate assembly language equivalent statements. In
order to include a number of asm statements, surround them with braces by using the following format:
asm {
pop ax; pop ds
iret

}

auto: define variables

Syntax: [auto] <data definition>;

Description: It defines variables whose resources are released as soon as they go out of scope. All the
local variables are auto by default and hence, auto storage class is rarely specified explicitly.

Example:

int main(int argc, char **argv)
{

auto int i;

i=25;

return i;

}

break: pass control out of the current loop

Syntax: break;

Appendix A: C++ Keywords and Operators 771

Description: It causes control to pass to the statement following the innermost enclosing while, do,
for, or switch statement.

Example:
for(i = 0; 1 < n; i++)

{

if(wants_to_terminate_loop)
break; // transfers control to the next statement outside loop

}

case: specify actions when the switch expression matches with it

Syntax: case <constant expression>:
where <constant expression> must be a unique integer constant value.

Description: The list of possible branch points within switch <statement> is determined by the
matching case statement within the switch body. Once a value is computed for <expression>, the
list of possible <constant expression> values determined from all case statements is searched
for a match. If a match is found, execution continues after the matching case statement until abreak
statement is encountered or till the end of switch is reached.

Example:
switch(figure_type) // figure_type is character variable
{
case 'l’:
draw_line(x1, y1, x2, y2);
break; // transfers to next statement to switch
case ‘c’:
draw_circle(x, y, r);
break; // transfers to next statement to switch

default: // execute if none of the cases match with switch expression
cout << “invalid figure code”;
break; // it can be omitted
}

catch: capture exception thrown

Syntax: catch(<exception-object>)

Description: An exception thrown in the program is caught by the catch statement. It follows try
statement and is responsible for taking corrective actions in response to an exception.

Example:

class div_by_zero { }; // empty class

int div(int a, int b)
{
if(b ==20)"
throw div_by_zero(); // divide by zero error;
return a/b;

772 Mastering C++

try
{
// read a and b value if necessary
int ¢ = div(a, b);
// no exception... do other activities
}
catch(div_by_zerc)
{
cout << "Divide by zero";
// take necessary action

}

char: define character variables

Syntax: char <varl>, .., <varn>;

Description: It defines variable(s) of type character which is 1 byte in length. They can be signed
(default) or unsigned.

Example: char chl, *name;

class: encloses data and functions into a single unit

Syntax: class <classname> [<:baselist>] { <member list> };

¢ <classname> can be any identifier unique within its scope.

+ <baselist> lists the base class(es) that this class derives from and it is optional.

+ <member list> declares the class’s data members and member functions.
Description: It declares C++ class which combines both the data and functions on those data into a
single unit. Within a class, the data are called data members and the functions are called member
Junctions.

Example:
class student // declares class called student
{ @
char *name; // data member
char *getname() // member function

{
return name;

}
}:

const: define constant variable

It creates a constant variable and makes it a read-only variable.

Syntax:
const [data type] <variable name> [= <value>] ;
<function name> (const <type> <variable name>)

Appendix A: C++ Keywords and Operators 773

Description: In the first version, the const modifier enables to assign an initial value to a variable that
cannot be changed later by the program. It can be used to define constant variables of primitive and
user-defined data types.

Example: const int my_age = 25;
Any assignments to my_age will result in a compiler error. Note that, a const variable can be indi-
rectly modified by using a pointer as follows:

*(int *)&my_age = 35;
When the const modifier is used with a pointer parameter in a function’s parameter list, the function
cannot modify the variable that the pointer points to as follows:

double sqrt(const double a };
Here the sqrt () is prevented from modifying the input value passed through a variable.

continue: transfer control

Syntax: continue;

Description: It passes control to the end of the innermost enclosing while, do, or for statement, at
which the loop continuation condition is evaluated.
Example:
for(i = 0; i < 20; i++)
(
if (array(i] == 0)
continue; // skips this iteration
arraylil = 1/arrayl(il;

}

default: default operation when all cases fail

Syntax: default:

Description: In a switch statement, if a case-match is not found and the default : prefix is found
within the switch body, control is transferred to that point, otherwise, the switch body is skipped
entirely.

Example: (see case)

delete: deallocate memory

Syntax: delete <pointer_to_name>;

Description: It destroys an object by releasing all the resources allocated to it by the new operator.
The delete operator destroys the object <name> by deallocating sizeof (<name>) bytes
(pointed to by <pointer_to_name>). The storage duration of the new object is from the point of
creation until the operator delete deallocates its memory, or until the end of the program.

Example:
int *p; // pointer to integer

p = new int{100}; // allocate memory for 100 integer elements

delete p; // deallocate memory allocated to p using new operator

774 Mastering C++

do: do..while loop

Syntax: do <statement> while (expression>;

Description: The <statement> enclosed within the body of a loop is executed repeatedly as long as
the value of <expression> remains nonzero. Irrespective of the value of a <expression>, this
loop executes its body atleast once.

Exampile:
i =1; factorial = 1;
do
{
factorial *= i;
i++ ;
} while (i <= n);

double: define double precision real variable

Syntax: double <varl>, ...<varn>;

Description: It defines variables of type real type which is 8 bytes in length. Use of double or float
requires linking in the floating-point math package if numeric coprocessor does not exist in the system.
Most of the compilers include math package automatically if floating point numbers are used in a
program.

Example: double a, b; // a and b are double type variables

else: actions when the if condition fails

Syntax:
if(condition)
statementl; // if condition is true
else
statement2; // if condition is false

Description: It specifies the alternate statement to be executed when the if condition fails

Example:
if(boy_age > girl_age)
cout << “boy is elder than girl”;
else
cout << *girl is elder than boy”;

enum: declare enumerated constants

Syntax: enum [<type_tag>] {<constant_name> [= <value>], ...} [var_list];

Description: It declares a set of constants of type int. A <type_tag> is an optional and is used to
name the set. <constant_name> is the name of a constant that can optionally be assigned the value
of <value>. Note that, <value> must be an integer. If <value> is missing, it is assumed to be
<prev> + 1 where <prev> is the value of the previous integer constant in the list. For the first
integer constant in the list, the default value is 0. <var_list> is an optional variable list that can
follow the type declaration. It assigns variables to the enum type.

Appendix A: C++ Keywords and Operators 775

Example: enum modes { LASTMODE = -1, BWAO = 0, C40, BW8O, C80, MONO = 7 };

In the above declaration, modes is the type tag, LASTMODE, BW40,C40, etc. are the enumerated
constant names. The value of C40is 1 (BW40 + 1) and BWS0 = 2 (C40 + 1),etc.

extern: specify variable/function type which is defined elsewhere

Syntax: extern <data definition>;
extern <function prototype>;
Description: It declares variables/functions and indicates that the actual storage and initial value of a

variable or the body of a function, is defined elsewhere, usually in a separate source code module. The
keyword extexrn is optional for a function prototype.

The extern variables cannot be initialized at the point of declaration and if they are not defined a
linker error Undefined symbol ‘symbol-name’ in module ‘modul e-name’ is generated.

Example:

extern int _fmode;
extern void factorial(int n);

float: define float variables

Syntax: float <varl>, ...<varn>;

Description: It defines variables of £1oat data type, which are 4 bytes in length. Use of double or
£loat requires linking in the floating-point math package. Most of the compilers including Borland
C++ will do this automatically, if floating point numbers are used in a program.

Example: float a, b;

for: loop

Syntax: for ([<exprl>] ; [<expr2>] ; [<expr3>]) <statement>

Description: The <statement> enclosed with the body of a loop is executed repeatedly as long as
the value of <expr2> remains nonzero. The <statement> is executed repeatedly until the value of
<expr2> is 0. The <exprl> is evaluated before the first iteration and is usually used to initialize
variables of the for loop. The <expr2> is evaluated before entering the loop statement. After each
iteration of the loop, <expr3> is evaluated, and is usually used to increment a loop counter.

In C++, <expr1> can have an expression or variable definition. The scope of any identifier defined
in <expr1> is extended to outside its loop and those defined within the loop body is limited to that
loop iteration. All the expressions are optional. If <expr2> is left out, it is assumed to be 1. ’

Example:
for(i=0; i < 100; i++)
cout << “i = * << i << endl;

£riend: allow other function/class to access private members of a class

Syntax: friend <identifier>;

Description: A friend of aclass canbe a function or a class. Friend function or friend class is allowed
to access private or protected members of a class. A class which wants other class or function

776 Mastering C++

to be its friend, should explicitly declare it as its friend. Friend function or class cannot access members
of a class to which it is a friend directly; it has to access them using class objects.

Example:

class stars

{
private:
int magnitude;

friend galaxy; // galaxy is friend class
Y;
class galaxy

{

void func()
{
stars sl;
sl.magnitude = 100; // valid since galaxy is a friend of stars

}i

The above declaration states that, the class galaxy can access all the members of the class stars
but not vice-versa.

goto: transfer control

Syntax: goto <identifier> ;

Description: It transfers control to the specified location. Control is unconditionally transferred to the
location of a local label specified by <identifier>.

Example:
Again:
goto Again;
Note that Labels must be followed by a statement.

if: actions when the if condition succeeds

Syntax:
if(<expression>) // if statement
<statementl>;
if(<expression>) // if-else statement
<statementl>;
else
<statement2>;
Description: It transfers control conditionally to a required statement based on the conditional result.
If <expression> is nonzero when evaluated, <statement1> is executed. In the second case,
<statement2> is executed if the <expression> is zero. An optional else can follow an if

Appendix A: C++ Keywords and Operators 777

statement, but no statements can come between an if statement and an else; however, multiple
statements can be enclosed within flower brackets.

Examples:
if (count < 50)
count++;
1f(x < y)
small = x;
else
small = y;

The #if and #else preprocessor statements (directives) look similar to the if and else state-
ments, but have very different effects and their effect can be seen only at compile time. They decide
which source file lines are to be compiled and which are to be ignored.

inline: substitute the function body at the point of call

Syntax:

inline <datatype> <function>(<parameters>) { <statements>; }
inline <datatype> <class>::<function> (<parameters>) { <statements>; }

Description: It declares/defines C++ inline functions. The compiler substitutes function call by the
body of a function so that program execution speed increases. Member functions defined within the
body of a class are treated as inline functions by default.

The first syntax declares an inline function by default. This syntax can be used to define normal
functions or member functions as inline function. The second syntax declares an inline function
explicitly and such definitions need not fall within the class definition.

Tnline functions are best reserved for small, frequently used functions, and any normal function
can also be made as inline.

Example:

// Implicit inline statement
int num; // global num
class cat
{
public:
char* func(void) { return num; } // inline function implicitly
char* num;
}
// Explicit inline statement
inline char* cat::func(void) { return num; }

Any C++ function can be declared inline as follows:

inline swap(int *a, int *b)

{
// swap without using temporary variable
*a = *a + *b;
*h = *a - *b; // *b
*a = %3 - *b; // *a

(*a + *b) - *b
(*a + *b) - *a

1]
*
o

*b

778 Mastering C++

int: define integer variable

Syntax: int <varl>, .., <varn>;

Description: It defines variables of integer data type which is one word in length. They can be signed
(default) or unsigned. It is represented by 2 bytes under 16-bit operating system (e.g., MS-DOS) and 16-
bit compiler (Borland C++) and 4 bytes under 32-bit OS and compilers (e.g., Under UNIX).

Examples:
int i, j;
long x;) // int is implied
signed int i; // signed is default

unsigned long int 1;. // int OK, not needed

new: allocate memory

Syntax:
<pointer_to_name> = new <name> [count };
<pointer_to_name> = new <name> (init_value);

Description: The new operator creates an object <name> by allocating sizeof (<name>) *count
bytes from the heap. The storage duration of the new object is from the point of creation until the
operator delete deallocates its memory, or until the end of the program.

Example: (see delete)

int *iptr = new int[15 }; // allocates 15 integer memory
int *a = new (10); // allocates a integer and assigns 10

operator: overload operator

Syntax:
operator <operator symbol>(<parameters>)

{

<statements>;
}

Description: li allows to define a new action for the existing C++ overloadable operators to operate on
user defined data types. The keyword operator followed by an operator symbol, defines a new
(overloaded) action for the given operator.

Exampile:

complex operator +(complex cl, complex c2)

{

return complex(cl.real + c2.real, cl.imag + c2.imag);

}

private: specify class members access scope

Syntax:
private: <declarations>
Description: It explicitly declares members of a class to have private privilege. If a memberis pri-

vate, it can be accessed only by member functions or friends of the class. Members of a class are
private by default unless ctherwise specified explicitly.

Appendix A: C++ Keywords and Operators 779

Example:

class Abc
{

int a; // private by default

public:
int c¢;

private: // private by explicit
int b;

protected: // protected by declaration
int c;

public: // public by declaration

}i

protected: specify class members access scope

Syntax: protected: <declarations>

Description: It explicitly declares members of a class to have protected privilege so that they are
inheritable to derived classes similar to public members. They can either have private or pro-
tected status in derived classes depending on type of derivation. Note that protected members have
the same privilege as private member except that they are inheritable.

Example: (see private)

public: members accessible to all users

Syntax: public: <declarations>

Description: It explicitly declares members of a class to have public privilege and they are accessible to
all the users. If a member is public, it can be used by any function. In C++, members of astruct or
union are public by default.

Example: (see private)

register: allocate a register for the variable

Syntax: register <data definition>;

Description: It informs the compiler to allocate a CPU register if possible for the variable to speedup
data access.

Example: register int i;

return: transfer control to the caller

Syntax: return [<expression>] ;

Description: Returns control immediately from the currently executing function to the calling routine,
optionally returning a value.

782 Mastering C++

template: declare generic functions or classes

Syntax: template < template-argument-list > declaration

Description: It constructs a family of related functions or classes. It can be used to declare function
iemplates and class templates..

Examples:

template < class T >
swap(T & a, T & b) // function template
{
T temp;
temp = a;
a = b;
b = temp;
}
template <class T> // class template
class myclass
{
T a;

}:

this: pointer to current object

Syntax:

this // address of the class in which it is referenced
this->member // access a member

Description: It is a predefined pointer variable within every class and points to the current object.
this is passed as a hidden argument in all calls to non-static member functions. The keyword this is
a local variable available in the body of any nonstatic member function. The keyword this does not
need to be declared and is rarely referred to explicitly in a function definition. However, it is used
implicitly within the function for member references.

Example:
class date

{
int day;

void init()
{
this->day = 1; // same as day = 1
3
}i
If x.func (y) is called, where y is a member of x, the variable this is set to &x and-y is set to
this->y, which is equivalent to x.y.

throw: raise an exception

Syntax: throw object; // object of a class

Appendix A: C++ Keywords and Operators 783

Description: It allows to raise an exception when an error is generated during computation. It normally
raises exception using temporary object of a empty class.

Example: (see catch)

try: enclose a code raising an exception

Syntax: try {
// code raising exception

}

Description: A code raising an exception or exceptions must be enclosed within try-block. It indicates
that the program is prepared to test for the existence of an exception if it occurs within the scope of the
try-block. The catch-block following the try-block will actually take appropriate action for all those
exceptions raised.

Example: (see catch)

typedef£: enhance existing data type

Syntax: typedef <type definition> <identifier>;

Description: It assigns the symbol name <identifier> to the data type definition <type defi-
nition>. It helps in declaring a convenient name for the existing data type and thus simplifies
representation of complicated statements.

Examples:

typedef unsigned char byte; // a new data type called byte is created
cypedef struct
{
double re, im;
} complex;
typedef int * array_t; // array_t p; is same as int *p;
The definition such as

byte a, b;

is actually treated as
unsigned char a, b;

union: all members share the same memory

Syntax:
union [<union type name>]

{

<type> <variable names> ;

} [<union variables>] ;
Description: It is similar to a struct, except that its members share the same storage space.

Example:
union int_or_long

{

int i;

784 Mastering C++

long 1;
} a_number;

The compiler will allocate enough storage ina_number to accommodate the largest element in the
union. Unlike a struct, the variables a_number. i and a_number. 1 occupy the same location
in memory. Thus, writing into one, will overwrite the other. Elements of a union are accessed in the
Same manner as a struct.

virtual: declares virtual functinn or class

Syntax:

class classname

{

virtual int myfunc()=0;
Y

Description: It can be used to make a function or class virtual. Virtual function allows derived classes
to provide different versions of a base class function, which is declared as virtual function. Virtual class
allows to inherit only one copy of a base class indirectly from more than one immediate base classes.

Examples:

Virtual function:

class figure
{
virtual void draw() = 0; // definition in derived class
};
class line: public figure

{
draw() // implements virtual function declared in base class
{
// draw line
}
}:
figure *fig; // can point to its derived class objects also
line 11;
fig = &11;

fig->draw(); // invoke draw() defined in the class line

Virtual class:

class B { ...};
class D : B, B{ ... }; // illegal
However, a base class can be indirectly passed to the derived class more than once:
class X : public B { ... };
class Y : public B { ... };
class Z : public X, public Y { ... }; // Error

In this case, each object of class z will have two sub-objects of class B.

Appendix A: C++ Keywords and Operators 785

If this causes problems, the keyword virtual can be added to a base class specifier. For Example,

class X : virtual public B { ... };
class Y : virtual public B { ... };
class 2 : public X, public Y { ... };

B is now a virtual base class, and class Z has only one sub-object of the class B.

void: empty data type

Syntax: void varl, var2, ..., varn;
void funcname(..};

Description: It can be used to define variables or declare functions which return nothing. When used
as a function return type, void means that the function does not return a value.

Example:

The function definition returning no data to a caller is as follows:
void hello(char *name)

{
cout << "Hello, " << name;

}
The function that does not take any parameters is indicated by void, forinstance, int init (void)

Void pointers cannot be dereferenced without explicit type casting. This is because the compiler
cannot determine the size of the object the pointer points to. For Example,

int x; float r;

void *p = &x; /* p points to x */
int main (void)
{

*(int *) p = 2;
p = &r; /* p points to r */
*(float *)p = 1.1;

}

volatile: update memory when the variable is assigned to register

Syntax: volatile <data definition> ;

Description: It indicates that a variable can be changed by a background routine. Every reference to the
variable will reload the contents from memory rather than take advantage of situations where aregister
is allocated to the variable for efficiency purpose. Note that, C++ allows volatile to be applied to
objects.

Example: volatile int i;

while: while loop, repeats execution

Syntax: while (<expression>) <statement>

Description: The <statement> is executed repeatedly as long as the value of <expression>
remains nonzero. The test takes place before each execution of the <statement>.
Example:

i = 1; factorial = 1;

786 Mastering C++

while(1 <=n)

{

factorial *= i;

i++;

}

C++ Operators

Some of the operators such as new,
addition to them, C supports many other operators w
has precedence and associativity
ated first when an expression is of type mixed-mode, wh

operands associated with each operator are to be evaluated.

delete, etc. have been discussed in the previous section. Ir.
hich are summarized in Table A.1. Every operatot
associated with them. Precedence specifies th
ereas, associativity specifies the order in which

e operator to be evalu-

Operator Summary
! Scope resolution ClassName :: member
i global name
member selection object . member
- member selection pointer -> member
(1] subscripting pointer [expr]
) function call expr (expr_list)
) value construction type (expr_list)
t post increment lvalue ++
- post decrement lvalue --
sizeof Size of object size of expr
sizeof size of type sizeof (type)
++ pre increment ++ lvalue
- pre decrement -- lvalue
~ complement ~ exor
! not ! expr
- unary minus - expr
+ unary plus - expr
i‘ address of ; TXPE e
dereference . e;,(:ru
new
create (allocate)
delete new type
delete [) gezt?;z (ii;allocate) delete pointer
@] estroy armay delete [] pointer
cast (type conversion) (type) expr
* member selection object .* pointer-to-member
->* member selection pointer ->* pointer-t0-member
* multiply expr * expr
/ divide expr / expr
% modulo (remainder) expr % expr

add (plus)
subtract (minus)

expr + expr

expr - expr

Table A.1: C++ operators

(Continued)

Appendix A: C++ Keywords and Operators

Operator Summary (Continued)

<< shift left expr << expr

>> shift right expr >> expr

< less than expr < expr

<= less than or equal expr <= expr

> greater than expr > expr

>= greater than or equal expr >= expr

== equal expr == expr

1= not equal expr != expr

& bitwise AND expr & expr

A bitwise exclusive OR expr ~ expr

| bitwise inclusive OR expr | expr

&& logical AND expr && expr

| logical inclusive OR expr || expr

? conditional expression expr ? expr : expr
= simple assignment lvalue i expr
= multiply and assign i"aiue = expr
= divide and assign value /= expr
Yo= modulo and assign lvalue %= expr
- assig lvalue += expr
- add and assign) lvalue -= expr
<<= subtract and assign lvalue <<= expr
o> shift left and assign ilvalue >>= expr
= AND and assign lvalue &= expr
_ inclusive OR and assign lvalue |= expr
A exclusive OR and assign lvalue "= expr

throw throw exception throw expr

comma (sequencing) expr expr

Table A.1: C++ operators

787

Appendix B: C++ Library Functions

Function

abort ()
abs ()
acos()
asctime()
isin()
assert()
atan()
atan2()
atexit ()
atof ()
atoi()
atol()
bsearch()
calloc()
ceil()
clearerx()
clock()
cos()
cosh()
ctime()
exit()
fabs()
fclose()
feof ()
ferror()
fflush()
fgetc ()
fgetpos()
fgets()
floor()
fmod ()
fopen()
fprintf ()
fputc()
fputs()
fread()
free()
freopen()
frexp()
fscanf ()
fseek()
fasetpos()
fatat ()
ftell()
fwrite()
getc()
getchar()
gets ()
isalnum()
isalpha()
isascii()
iscntrl()
ssdigit()
isgraph()
islowerx()
isprint()
ispunct()
isspace()
isupper()
igsxdigit()

788

Description

abnormally terminates a program
returns the absolute value of an integer
calculates the arc cosine

converts date and time to ASCII
calculates the arc sine

tests a conditinn and possibly aborts
calculates the arc tangent

calculates the arc tangent of y/x
registers an exit function

converts a string to a floating-point number
converts a string to an integer
converts a string to a long integer
binary search of an array

allocates main memory

rounds up

resets error indication

determines processor time

calculates the cosine of a value
calculates the hyperbolic cosine of a value
converts date and time to a string
terminates program

returns the absolute value of a floating-point number

closes a.stream

detects end-of-file on a stream

detects errors in a stream

flushes a stream

gets character from stream

gets the current file pointer

gets a string from a stream

rounds down

calculates x modulo y, the remainder of x/y
opens a stream

writes formatted output to a stream

puts a character on a stream

outputs a string on a stream

reads data from a stream

free allocated block

associates a new file with an open stream

splits a double number into its mantissa and exponent

scans and formats input from a stream
repositions a file pointer on a stream
positions the file pointer of a stream
gets file statistics .

returns the current file pointer
writes to a stream

gets a character from a stream

gets a character from stdin

gets a string from stdin

character classification macro
character classification macro
character classification macro
character classification macro
character classification macro
character classification macro
character classification macro
character classification macro
character classification macro
character classification macro
character classification macro
character classification macro

Include File

stdlib.h
math.h
math.h
time.h
math.h
assert.h
math.h
math.h
stdlib.h
math.h
stdlib.h
stdlib.h
stdlib.h
stdlib.h
math.h
stdio.h
time.h
math.h
math.h
time.h
stdlib.h
math.h
stdio.h
stdio.h
stdio.h
stdio.h
stdio.h
stdio.h
stdio.h
math.h
math.h
stiio.h
stdio.h
stdio.h
atdio.h
stdio.h
alloc.h
stdio.h
math.h
stdio.h
stdio.h
stdio.h
sys\stat.h
stdio.h
stdio.h
stdio.h
stdio.h
stdio.h
ctype.h
ctype.h
ctype.h
ctype.h
ctype.h
ctype.h
ctype.h
ctype.h
ctype.h
ctype.h
ctype.h
ctype.h

Appendix B: C++ Library Functions

Funcuon Description Include File
labs () gives long absolute value math.h
ldexp () calculates x * 2 math.h
ldiv() divides two longs. returning quotient and remainder stdlib.h
log() calculates the natural logarithm of x math.h
logl0() calculates log, (x) math.h
malloc() allocates main memory stdlib.h.
memchr () searches n bytes for character ¢ mem.h
memcmp () compares two blocks upto a length of exactly n bytes mem.h
memcpy () copies a block of n bytes mem.h
memset () set n bytes of a block of memory to byte ¢ mem.h
mktime() converts time to calendar format time.h
perror() prints a system error message stdio.h
pow() calculates x to the power of y math.h
printf () writes formatted output to stdout stdio.h
putc{) outputs a character to a stream stdio.h
putchar() outputs character on stdout stdio.h
puts() outputs a string to stdout stdio.h
raise() sends a software signal to the executing program signal.h
rand () random number generator stdlib.h
realloc() reallocates main memory stdlib.h
remove () removes a file stdio.h
rename () renames a file stdio.h
rmdir() remove a file directory dir.h
scanf () scans and formats input from the stdin stream stdio.h
setbuf () assigns a buffer to a stream stdio.h
setjmp () set up for non-local goto setjmp.h
signal () specifies signal-handling actions signal.h
sin() calculates sine math.h
sinh() calculates hyperbolic sine math.h
sprintf() writes formatted ouput to a string stdio.h
srand() initializes random number generator stdlib.h
sscanf () scans and formats input from a string stdio.h
stat () gets information about a file sys\stat.h
strcat() appends one string to another string.h
strchr() scans a string for the first occurrence of a given character string.h
stremp () compares one string with another string.h
strcoll() compares two strings string.h
strepy() copies one string into another string.h
strcspn() scans a string for initial segment string.h
strdup () copies a string into a newly created location string.h
strerror() returns a pointer to an efror message string string.h
strftime() formats time for output time.h
strlen() calculates the length of a string string.h
stracat () appends a portion of one string to another string.h
stracmp() compares a portion of one string to a portion of another string.h
strncpy() copies a given number of bytes from one string into another stdio.h
strrchr () scans a string for the last occurrence of a given character string.h
strespn() scans a string for the first segment (a subset of a given string) string.h
strstr() scans a string for the occurrence of a given substring string.h
strtod() converts a string to a double value stdlib.h
strtok() searches one string for tokens string.h
stxtoul() converts a string to an unsigned long in the given radix stdlib.h
strxfrm() transforms a portion of a string string.h
systenm() invokes the shell in order to execute a command stdlib.h
tanh() calculates the hyperbolic tangent math.h
time() gets the time of the day time.h
tmpnam() creates a unique file name stdio.h
tolower () translates characters to lowercase ctype.h
toupper () translates characters to uppercase ctype.h
ungetc() pushes a character back into the input stream stdio.h
vfprintf() writes formatted output to a stream stdio.h
vprintf () writes formatted output to stdout stdarg.h

vaprintf () writes formatted output to a string stdarg.h

Appendix C: Glossory

abstract class It acts as a frame work for creating new classes. It appears normally as the root of a class
hierarchy. Its instances cannot be created.

abstract data type It is a data type whose internal representation is fully transparent to the user. They are
popularly called ADTs (Abstract Data Types).

access operations They allow access to the internal state of objects. without modifying them.

actor A model of concurrent computation in distributed systems. Computations are carried out in
response to the communications sent to the actor system.

alias A different name given to a variable. Variable aliasing allows to access the same data with different
names.

attributes Data members of an object.

base class A class from which new classes can be created.

callee A function which is called. It is also known as called function.

caller A function which calls. It is also known as calling function.

class It is the basic language construct in C++ for creating user-defined data types. It unites both the
data and functions that operates on data.

class hierarchy The set of superclasses and subclasses derived from the superclasses can be arranged
in a tree-like structure, with the superclasses on top of all classes derived from them. Such an arrange-
ment is called a hierarchy of classes.

class object A variable whose data type is a class.

client An object which request services of other objects.

constructor A special member function of a class, which is invoked automatically whenever an instance
of a class is created. It has the same name as its class.

container class A class that can store objects of other classes. Normally data structure classes act as
container classes.

copy constructor A constructor which receives objects of the same class as argument. Object param-
eters to copy constructors must be passed either by reference or as pointers.

CORBA It is an acronym for Common Object Request Broker Architecture. Cbject Management Group
(OMG) developed standards for connecting and integrating object applications running in heteroge-
neous, distributed computing environments. Defines the request protocol used by objects in communi-
cating across platform and machine boundaries.

data abstraction It refers to creation of new data types that are well suited to an application to be
programmed. It provides the ability to create user-defined data types, for modeling a real world object,
having the properties of built-in data types and a set of permitted operators.

data flow diagram A diagram that shows the flow of data through a system. It can have nodes to
process those data also.

data hiding It hides data from rest of the program. Internal representation of hidden data is unknown to
its users. However, it can be accessed by using interface functions.

data member A variable that is defined in a class declaration.

default parameter A parameter whose value is specified at the function declaration and is used if the
corresponding actual parameter is missing in a call to that function.

790

Appendix C: Glossary 791

delegation Itis an alternative to class inheritance. Delegation is a way of making object composition as
powerful as inheritance for reuse. In delegation, two objects are involved in handling a request: a
receiving object delegates operations to its delegate.

derived class A class that inherits properties of other classes (base classes).

destructor A special member function of a class, which is invoked automatically whenever an object
goes out of scope. It has the same name as its class with a tilde character prefixed.

dynamic binding It postpones the binding of a function call to a function until runtime. This is also
known as late or runtime biding.

dynamic memory allocation It allows to allocate the requested amount of primary memory at runtime.
dynamic objects A class can be instantiated at runtime and objects created by such instantiation are
called dynamic objects.

early binding The binding of a function call to a function is done during compile time. This is also
known as static or compile-time biding.

encapsulation It is a mechanism that associates the code and the data it manipulates into a single unit
and keeps them safe from external interference and misuse. In C++, this is supported by a construct
called class. An instance of a class is known as an object, which represents a real-world entity.
exception It refers to any unucual condition in a program. It is used to notify error to a caller.
exception handling It provides a way of transferring controi and information to an unspecified caller
that has expressed willingness to handle exceptions of a given type. Exception handling can be used to
support notions of error handling and fault tolerant computing.

extensibility It is a feature which allows to extend the functionality of existing software components. In
C++, this is achieved through abstract classes and inheritance.

extraction operator The operator >> which is used to read data from input stream object.

free store A pool of memory from which storage space of objects or variables is allocated. This is also
know as heap.

friend A function which has authorization to access the private members of a class though it is not a
member of the class.

friend class A class that can access private members of another class. That is, all member functions of
a friend class are friend functions.

function overloading It allows multiple functions to assume the same name as long as they differ in
terms of number of parameters or their data type.

function prototype It just specifies function return type and its arguments data type with function
implementation. Itis also know as function declarator.

genericity Itis a technique for defining software components that have more than one interpretation
depending on the parameters data type. It allows the declaration of data items without specifying their
exact data type. Such unknown data types (generic data type) are resolved at the time of their usage
(function call) based on the data type of parameters.

header file A file containing declaration of new data types, macros, and function prototypes. For
example, jostream.h is a header file.

indirection operator The * operator prefixed to a pointer variable. It is used to access the contents of
the memory pointed to by a pointer variable.

inheritance It allows the extension and reuse of the existing code without having to rewrite the code
from scratch. Inheritance involves derivation of new classes from existing ones, thus enabling the
creation of a hierarchy of classes that simulates the class and subclass concept of the real world. A new

792 Mastering C++

class created using existing classes (base classes) is called the derived class. This phenomenon is
called inheritance. The derived class inherits the members - both data and functions of the base class.
inheritance path A series of classes that provide a path along which inheritance can takes place.
inline function A function whose body is substituted at the place of its call.

insertion operator The operator << which is used to send data to output stream object.

instance A variable or an object of a class is known as instance of a class.

instantiation The process of creation of objects of a class is called class instantiation.

interface Member functions that allow to access data members of a class.

late binding Refer to dynamic binding.

lifetime It is the interval of time an object exists by occupying memory.

manipulator A data object that is used with stream operators.

member Data and functions defined with a class are called members except friend functions.
member functions Functions which are members of a class are known as member functions.

message It is a request sent to an object.

message passing It is the process of invoking an operation on an object. In response to a message, the
corresponding method (procedure) is executed in the object.

method A member function is also called as method,

multiple inheritance The mechanism by which a class is derived from more than one base class is
known as multiple inheritance. Instances of classes with multiple inheritance have instance variables
for each of the inherited base classes,

NULL The character that is used to indicate the end of the string.

NULL pointer A pointer that does not hold the address of any object.

object It is an instance of a class.

ODMG Itis the acronym for Object Database Management Group. Small consortium, loosely affiliated
with OMG, established to define a standard for data model and language interfaces to object-oriented
database management systems.

OMG 1t is the acronym for Object Management Group. Consortium of OO software vendors, develop-
ers, and users promoting the use of objects for the development of distributed computing systems.
World-Wide-Web (WWW) home page located at http://'www.omg.org.

OO0 It is the acronym for Object-Oriented. It is an adjective (modifier) indicating that the associated
noun has features to support role-oriented decomposition, modeling, or construction.

OOA It is the acronym for Object-Oriented Analysis. Use of role-oriented decomposition techniques to
model a system.

OOBE It is the acronym for Object-Oriented Business Engineering. Application of object concepts to
the design or restructuring of business processes or enterprise architecture,

OOD It is the acronym for Object-Oriented Design. Application of object concepts to the design of
software.

OODB 1t is the acronym for Object-Oriented Database. A database where units of information are
defined and managed as objects.

OOP 1t is the acronym for Object-Oriented Programming. An application of object concepts to the
implementation of software, employing an OOPL.

OOPL It is the acronym for Object-Oriented Programming Languages. Programming language that
includes features to support objects, such as data abstraction, encapsulation, sub-classing, inherit-
ance, and polymorphism; examples include C++, Smalltalk, Self, Eiffel. May be a hybrid (incremented)

Appendix C: Glossary 793

language that extends an otherwise non-OO base language through the addition of OO constructs (e.g.
C++, Objective-C, Object Pascal, Ada).

OOPSLA A conference called Object-Oriented Programming, Systems, Languages, and.Applications.
operator overloading It allows to extend functionality of a existing operator to operate on user-defined
data type also.

pass by pointer The address of an actual parameter is explicitly passed to a function.

pass by reference The address of an actual parameter is implicitly passed to a function.

pass by value A copy of the actual parameter value is passed to a function.

persistence The phenomenon where object (data) outlives the program execution time and exists be-
tween executions of a program is known as persistence. All database systems support persistence. In
C++, this is not supported. However, the user can build it explicitly using file streams in a program.
polymorphism It is a feature that allows a single name/operator to be associated with different opera-
tions depending on the type of data passed. In C++, it is achieved by function overloading, operator
overloading, and dynamic binding (virtual functions).

preprocessor A part of the compiler that processes header files, macros, and escape sequences with the
designated character.

private member A class member which is accessible to only members of a class or friend functions.
protected member A class member whose scope is the same as private except that it is inheritable.
public member A class member which is accessible to external users through dot operator.

pure virtual function A function whose declaration exist in a base class and implementation in derived
classes. A class having pure virtual member functions cannot be instantiated and hence, such classes
are called abstract classes.

reusability A feature which allows to build new classes from existing classes.

scope The region of code in which an item is visible.

scope resolution operator It permits a program to reference an identifier in the global scope that has
been hidden by another identifier with the same name in the local scope.

server An object which services the client’s requests.

static binding Refer to early binding.

static member A class member which is declared as static. A static data member of a class is shared by
all the instances of the class. A static member functions cannot access auto members of a class.
stream A sequence of characters is called stream. It can be an input stream or an output stream.
structured programming Software development methodology which employs functional decomposi-
tion and a top-down design approach for developing modular software (traditional programming tech-
nique of breaking a task into modular subtasks).

sub-class Another name for derived class.

super-class Another name for base class.

templates See genericity.

this pointer It is a pointer (named as this) to the current object.

type conversion A conversion of a value from one type to another.

virtual base classes A class which gets inherited to a derived class more than once has to be declared
as virtual. Such base classes are called virtual base classes.

virtual functions A member function prefixed with the keyword virtual. It allows to achieve dynamic
binding.

Appendix D: ASCII Character Set

Character Decimal Character Decimal
(NUL) 00 # 35
© (SOH) 01 $ 36
@ (TX) 02 % 37
¥ (ETX) 03 & 38
¢ (EOM) 04 ’ 39
& (ENQ) 05 (40
& (ACK) 06) 41
o (BS) 08 + 43
(HT) 09 ' 44
(LF) 10 - a5
o N 11 . 46
Q@ (FF) 12 / 47
d (R 13 0 48
Jd so) 14 1 49
I (Sh 15 2 50
P> (DLE) 16 3 51
<« (DCY) 17 4 52
! (©c2 18 5 53
1" (oca) 19 6 54
T @c4 20 7 55
§ mak 21 8 56
- (SYN) 22 2] 57
§$ ETB) 23 : 58
T (AN 24 ; 59
) EWM 25 < 60
-» (SUB) 26 = 61
&« (ESC) 27 > 62
(cursor right) (FS) 28 ? 63
(cursor left) (GS) 29 @ 64
(cursorup) (RS) 30 A 65
(cursor down)(US) 31 B 66
(SP) 32 C 67
! 33 D 68
" 34 E 69

794

Continucd ... P>

Appendix D: ASCII Character Set 795

Character Decimal Character Decimal
F 70 i 105
G 71 J 106
H 72 K 107

[73 I 108
J 74 m 109
K 75 n 110
L 76 o 111
M 77 P 112
N 78 q 113
o 79 r 114
P 80 S 115
Q 81 t 116
R 82 u 117
S 83 v 118
T 84 w 119
U 85 X 120
\'% 86 Yy 121
w 87 z 122
X 88 { 123
Y 89 | 124
z 90 } 125
[91 ~ 126
\ 92 (DEL) 127
] o3 ¢ 128
A 04 U 129
_ 95 é 130 :
¢ 96 a 131 ‘
a Y4 a 132
b o8 a 133
c 99 a 134
d 100 ¢ 135
e 101 é 136
f 102 é 137
g 103 é 138
h 104 T 139

Continued ... P>

796 Mastering C++

Character Decimal Character Decimal

i 140 » 175
i 141 = 176
A 142 et 177
A 143 N 178
E 144 179
2 145 7] 180
£ 146 y 181
o 147 5 182
6 148 T 183
o 149] 184
a 150 } 185
u 151 186
y 152 Al 187
o 153 <l 188
Q 154 i/ 189
¢ 155 4 190
£ 156 L 191
¥ 157 L 192
R 158 1 193
! 159 T 194
a 160 k 195
i 161 - 196
6 162 ! 197
U 163 t 198
n 164 | 199
N 165 1 200
a 166 In 201
Q 167 1L 202
é 168 L 203.
- 169 - 204
B 170 - 205
Ya 171 2l 206
v 172 - 207
i 173 A 208
« 174 . 209

Continued ... P

Appendix D: ASCII Character Set

Character Decimal Character Decimal
nin 210 e 233
I 211 Q 234
= 212 S 235
F 213 oo 236
m 214 %) 237
1 215 € 238
+ 216 N 239
4 217 = 240
r 218 + 241
|| 219 z 242
L <

220 = 243

| 221 (244
| 222 J 245

- 223 * 246
a 224 ~ 247
B 225 ° 248
r 226 . 249

T 227 . 250
b3 228 v 251
c 229 n 252
K 230 z 253

Y 231 - 254
¢ 232 (SP) 255

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL

HT
LF

FF
CR
so
sl

Nutl

Start of Heading
Start of Tevt

End of Text

End of Transmission
Enquiry
Acknowledge

Bell

Backspace
Horizontal Tabulation
Line Feed

Vertical Tabulation
Form Feed
Carriage Return
Snift Out

Shift in,

797

DLE - Data Link Escape

DC - Device Control

NAK - Negative Acknowledge
SYN - Synctifbnous ldie

ETB - End of Transmission Block
CAN - Cancel

EM - End of Medium

SUB - Substitute

ESC - Escape

FS - File Separator

GS - Group Separator

RS - Record Separator

us - Unit Separator

SP - Space (Blank)

DEL - Delete

Appendix E: Bibliography

i1
(2]

3]
(4]
(5]
(6]

(7]

(8]
91
(10]
(11]
(12]
(13]

(14]

(15]
(16]

(17]

(18]
{19]
(20]
(21]
(22]

(23]
(4]
(25]
(26)
(27
(28]
(29]
(30]
(31]

Alan Joch, Nine ways to make your code more reliable — How Software Doesn’t Work ?, Byte
Magazine 49-60p, October 1995.

Bernd Muller, Is Object-Oriented Programming Structured Programming ?, ACM SIGPLAN
Notices, Volume 28, No. 9, September 1993.

Bjarne Stroustrup, The C++ Programming Language (2nd Edition), Addison Wesley, 1991.
Bjarne Stroustrup, The Design and Evolution of C++, Addison Wesley, 1994.

Bruce Eckel, Using C++, Osborne McGraw Hill, 1989.

Capper, Colgate, Hunter, and James, The impact of object-oriented technology on software qual-
ity: Three case histories, IBM Systems Journal, Volume 33, No. 1, 1994.

D. Dechanpeaur et al, The Process of Object Oriented Design, Seventh Annual Conference on
Object-Oriented Programming, System, Language, and Applications (OOPSLA), 1992.

Data Quest Magazine, OOP - New Sofiware Paradigm, 1-15 April, 1995, India.

E Balagurusamy, Object-Oriented Programming with C++, Tata McGraw Hill Publications, 1996.
Edmund X Dejesus, Big OOP, No Oops, Byte, August 1995.

Edward Yourdon, Object-Oriented Systems Design, Prentice Hall Inc, 1994.

Harald M Muller, Ten Rules for Handling Exceptions Handling Successfully, C++ Report, Jan. 1996

Henda Hodjami, A Reuse approach based on Object-Orientation, Software Engineering Notes,
Proceedings of the Symposium on Software Reusability, August 1995.

James and Josephine, Reuse Through Inheritance, Software Engineering Notes, Proceedings of
the Symposium on Software Reusability, August 1995.

Keith Gorlen, C++ Under UNIX, UNIX Papers, Waite Groups.

Margaret A. Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual, Addison-Wesley,
Reading, MA, 1990, ISBN 0-201-51459-1.

Markku Sakkinen, The Darker Side of C++ Revisited, Department of Computer Science and
Information Systems, University of Jyvaskyla, Finland.

Nicholas Wilt, Templates in C++, Supplement to Dr. Dobb’s Journal, December 1992.

Rajkumar, Fault Tolerant Computing, A Seminar Report, Bangalore University, 1995.

Randall Hyde, Object-Oriented Programming in Assembly Language, Dr. Dobb’s J ournal, Mar.1990.
Tim Rentsch, Object-Oriented Programming, SIGPLAN Notices, September, 1992.

Robert G Fichman and Chris F Kemerer, Object-Oriented and Conventional Analysus and Design
Methodologies, IEEE Computer, 1992.

Robert Lafore, Object-Oriented Programming in Turbo C++, Waite Group, 1992.

Steven J, A Technique for Tracing Memory Leaks in C++, NCR Microelectronics, Colorado.
SunSoft, C++ Selected Reading, Object-Oriented Programming, August 1994.

Turbo C++, Library Reference Manual, Borland International Inc., 1990

Venugopal K R and Vimala H S, Programming with Fortran, Tata McGraw Hill, India, 1994.
Venugopal K R and Vimala H S, Programming with Pascal and C, Tata McGraw Hill, India, 1994.
Venugopal K R and Rajkumar, Microprocessor x86 Programming, BPB Publications, India, 1995.
Venugopal K R and Maya, Programming with Pascal, Tata McGraw Hill, India, 1997.
Venugopal K R and Sudeep, Programming with C, Tata McGraw Hill, India, 1997.

